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Abstract. We investigate the coherent driving of atomic systems by Complex Hyperbolic Secant (CHS)
pulses in optical domain. First, with the help of a Rapid Adiabatic Passage approach we get physical
insight into the process. We discuss the limiting factors on spectral selectivity and transfer efficiency, such
as finite coherence lifetime and excitation finite duration. Then, with a highly-stabilized cw laser and fast
electronic equipment, we experimentally explore the CHS process at µs-timescale in a Tm3+:YAG crystal.
We demonstrate efficient adiabatic transfer over a few hundreds of kHz-wide spectral interval within the
inhomogeneous linewidth. We calculate and detect the Free Induction Decay signal as the signature of the
atomic coherences during the process.

PACS. 42.50.Md Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephas-
ings and revivals, optical nutation, and self-induced transparency – 32.80.Qk Coherent control of atomic
interactions with photons – 03.67.Lx Quantum computation

1 Introduction

Rare earth ions embedded into inorganic crystals have
been recently considered in the field of quantum informa-
tion [1–3]. They offer very long coherence lifetimes: optical
coherence times, up to 2.6 ms [4], and coherence times in
the ground state nuclear spin transitions, up to 80 ms [5],
have been observed. The optical transitions, with homoge-
neous linewidth of the order of kHz, are inhomogeneously
broadened up to several tenths of GHz, offering a very
large number of frequency channels. The ions embedded
in the crystals exhibit a large static dipole moment, allow-
ing dipole-dipole interaction between ions that belong to
different frequency channels [1].

To achieve quantum computing operations, as the
C-NOT gate proposed in [1], we have to coherently
drive all the ions belonging to a frequency channel. Hard
pulses [6] are not robust against the frequency variations
inside a frequency channel. They are not robust either
against the Rabi frequency inhomogeneities due to the
field absorption during the propagation through the ma-
terial, and due to the different orientations of the transi-
tion dipoles in the different sites of the crystal. Composite
pulses have been recently proposed to improve the hard
pulses robustness [7].

a e-mail: jean-louis.legouet@lac.u-psud.fr

Rapid Adiabatic Passage (RAP) is known to be ro-
bust against experimental parameter variations. In this
paper, we focus on a RAP process based on Complex Hy-
perbolic Secant (CHS) pulses that is commonly used in
NMR [8]. These pulses are able to achieve efficient, fre-
quency selective adiabatic transfer within an inhomoge-
neously broadened ensemble of atoms. CHS pulses have
also been studied in the field of coherent optics at fem-
tosecond timescale [9–11] where population inversion was
experimentally observed. Zero dispersion lines were used
to shape the femtosecond CHS [11]. In Tm3+:YAG, co-
herent driving is operated at µs timescale which opens
the way to efficient electronic modulation techniques. At
this timescale, a high-stability laser is required. We have
built a source that offers a linewidth of 250 Hz over the
10 ms process duration and, for the first time in opti-
cal domain, we were able to demonstrate >80% coherent
population transfer using a CHS pulse [12]. In the present
work we take advantage of our high-precision set-up to
thoroughly investigate CHS excitation both theoretically
and experimentally. The theoretical study relies on an adi-
abatic description of the Bloch vector motion.

In Section 2, we present RAP basics. Section 3 is de-
voted to the theoretical discussion of CHS population
transfer. The corresponding experimental results are pre-
sented in Section 4. The behavior of atomic coherence
under CHS excitation is examined in Section 5 in the
prospect of experimental Free Induction Decay observa-
tion, which is presented in Section 6.
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2 Adiabatic passage with a linearly swept
monochromatic laser

A two-level atom is conveniently described by the level
population difference n21 = n2−n1 and by the off-diagonal
density matrix element ρ12. The atom interacts with a
classical electric field defined as:

E(t) = E(t)e2iπν0t+iϕ(t) + cc (1)

where ϕ(t0) = 0 and ϕ̇(t0) = 0 and E(t) is a real quan-
tity. The field is close to resonance with the electric dipole
transition at ν12. Coupling with the electric field is char-
acterized by the Rabi frequency, defined as the product
of the field amplitude and the optical dipole moment dab,
divided by the Planck constant �:

Ω(t) =
dabE(t)

�
. (2)

In the absence of relaxation, the atomic system evolution
is given in the rotating wave approximation by the density
matrix equations [15]:

dn21

dt
= iΩ(ρ̃12 − ρ̃21)

dρ̃12

dt
=

iΩ

2
n21 − i[∆ + ϕ̇(t)]ρ̃12 (3)

where ∆ = 2π(ν0 − ν12) and

ρ̃12 = ρ12e
−2iπν0(t−t0)−iϕ(t). (4)

The atomic state can be represented by a three compo-
nent vector, the Bloch vector �B(u, v, w). The horizontal
components u and v respectively represent the real and
imaginary part of ρ̃12:

u = ρ̃12 + ρ̃21

v = i(ρ̃21 − ρ̃12). (5)

The vertical component w represents the population dif-
ference:

w = n12. (6)

In the absence of relaxation, the Bloch vector head evolves
on a sphere of unit radius, called Bloch sphere. The den-
sity matrix equation can be converted into the following
precession equation of the Bloch vector around the driving
vector �D(Ω, 0, ∆ + ϕ̇(t)):

d �B

dt
= − �D ∧ �B. (7)

In the context of quantum information, we need prepare
a two-level atom in an arbitrary superposition state, i.e.
direct the Bloch vector in an arbitrary orientation. An
elementary example of Bloch vector control is the π ro-
tation from downward to upward direction corresponding
to state swapping. The Bloch vector flipping is efficiently
achieved with the help of a fixed amplitude, infinite du-
ration, frequency swept field that resonantly interacts at

time t = t0. The laser frequency is linearly swept at chirp
rate r according to:

ϕ̇(t) = 2πr(t − t0). (8)

Initially the electric field exhibits a detuning ∆+ϕ̇(−∞) =
−∞. The corresponding driving vector �D is vertical,
downward oriented. As time elapses, the detuning in-
creases which makes �D rotate around Ov-axis until �D is
finally vertical, upward oriented. The vertical component
of �D vanishes at resonance and �D flips on a timescale
of Ω/r. Initially the ground state atomic Bloch vector is
also vertical, downward oriented on the Bloch sphere. The
Bloch vector adiabatically follows the driving vector �D ro-
tation provided that the Bloch vector precession period
around �D, 2π/Ω, is much smaller than the driving vector
flipping time Ω/r [13]. This condition reads as:

r � Ω2

2π
. (9)

Then the Bloch vector follows �D adiabatically from down-
ward to upward orientation on the Bloch sphere, which
corresponds to the atomic state swapping. An additional
condition arises because the Bloch vector rotation is a co-
herent process that must take place on a time interval
much smaller than the coherences lifetime T2. This condi-
tion is expressed as:

πΩγ12 � r (10)

where γ12 = (πT2)−1.
The infinite duration condition can be replaced by a

more tractable requirement. Let the excitation field shine
the atom for a finite time interval. Illumination starts at
time ti with detuning ∆ + ϕ̇(ti) from resonance. After
crossing the resonance, the laser is switched off at time tf ,
at distance ∆+ ϕ̇(tf ) from the atomic frequency. The pro-
cess can be described as an adiabatic transfer provided the
laser is switched on and off at detuning from resonance
much larger than the Rabi frequency. For positive chirp
rate this condition reads as:

∆ + ϕ̇(ti) � −Ω,

∆ + ϕ̇(tf ) � Ω. (11)

The shape of this finite duration chirped pulse is repre-
sented in Figure 1a.

We aim at swapping states over a narrow spectral in-
terval, the atomic frequency distribution covering a broad
inhomogeneous width. In other words, we want to selec-
tively address atoms embedded in a broad absorption line.
The adiabatic process we described above does not ac-
complish such a selective excitation. If we try to excite
a spectral interval ∆0 using a fixed amplitude, frequency
swept field with duration ∆0/r, the finite duration condi-
tion (11) is not satisfied at the edges of the swept interval.
As a result, the level population difference is affected out-
side the laser sweeping range, exhibits oscillations all over
the excited interval and does not show steep slopes at the
edges of the selected region [14].
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Fig. 1. Driving field amplitude and frequency variation for a
finite duration, constant amplitude, linearly frequency chirped
pulse (a), a complex hyperbolic secant (CHS) pulse (b), and
an interrupted CHS pulse (c), where the CHS amplitude and
frequency variations are switched off at time tint.

3 Frequency selective adiabatic passage
with complex hyperbolic secant pulses

Complex Hyperbolic Secant (CHS) pulses appear to offer
an appropriate tool to achieve frequency selective exci-
tation within an inhomogeneously broadened absorption
line. CHS excitation was first considered in the search for
analytic solutions to the Bloch equations [15–17]. In the
frame of NMR [8], it was proved that CHS pulses have po-
tential to create total spin inversion over a sharply defined
region within an inhomogeneously broadened spectrum.
With this excitation mode, more than half ground state
population was excited to upper level in Rb gases using
femtosecond light pulses [9,10]. Recently, in the framework
of quantum computing in rare-earth ions doped crystals,
CHS pulses were proposed by Roos and Mølmer as a tool
to efficiently swap states in a two-state system, and to
optically pump a three-level system in a dark state [18].

3.1 Infinite duration CHS without relaxation:
the adiabatic condition

The complex field amplitude E(t)eiϕ(t) of a CHS pulse is
defined as

E(t)eiϕ(t) = E(t0){sech[β(t − t0)]}1−iµ (12)

where µ is a real constant and β is related to the pulse
width. The corresponding Rabi frequency and instanta-
neous laser frequency are given by:

Ω(t) = Ω0sech[β(t − t0)]

ν(t) = ν0 +
µβtanh[β(t − t0)]

2π
. (13)

The variation of the amplitude and of the frequency
around ν0 is represented in Figure 1b.

An adiabatic condition similar to (9) shall be sat-
isfied so that state swapping proceeds efficiently under
CHS excitation. According to reference [8], state swap-
ping is achieved over a rectangular shaped spectral inter-
val with such pulses when µ > 2 and Ω0 > βµ. Although

calculation is restricted to Ω0 > βµ in reference [8], inves-
tigation can be extended to the Ω0 < βµ region. When
Ω0 < βµ, the final level population difference can be cal-
culated as:

wt→+∞ = − tanhπ

(
∆

2β
+

µ

2

)
tanhπ

(
∆

2β
− µ

2

)

− cosh(πq)sech
[
π

(
∆

2β
+

µ

2

)]
sech

[
π

(
∆

2β
− µ

2

)]

(14)

where q =
√

µ2 − Ω2
0/β2. This expression is very similar

to the Ω0 > βµ expression derived in reference [8], except
cos[π

√
Ω2

0/β2 − µ2] has been replaced by cosh(πq). Total
population transfer is achieved over the spectral interval
−βµ < ∆ < βµ provided the second term on the right
hand side of equation (14) is much smaller than unity.
As in the case Ω0 > βµ, the swapped spectral region is
defined more sharply as µ increases [8]. If µ > 2, the sec-
ond term reduces to cosh(πq) exp(−πµ). This quantity is
much smaller than unity if πq � 1. When πq > 1, the
expression can be rearranged as:

cosh(πq) exp(−πµ) ≈ 1
2

exp[π(q − µ)]

=
1
2

exp
[
− µπa2

1 + [1 − a2]1/2

]
(15)

where a = Ω0/µβ. This is much smaller than unity if:

µπ

2
a2 � 1. (16)

The chirp rate reads as:

r(t) =
dν

dt
=

µβ2

2π

1
cosh2[β(t − t0)]

. (17)

Therefore, the condition (16) reduces to:

r0 � Ω2
0

4
(18)

where r0 = r(t0) and Ω0 = Ω(t0). This is nothing but the
adiabatic condition (9) at time t = t0. Thus efficient pop-
ulation transfer can be achieved over the spectral interval
−βµ < ∆ < βµ provided µ > 2 and the adiabatic con-
dition is satisfied at t = t0. Actually, given Ω(t) and r(t)
definitions (13, 17), the ratio Ω(t)2/r(t) is constant and
equals Ω2

0/r0 so that the adiabatic condition is satisfied at
any moment, once satisfied at t = t0. The condition (18)
can be rewritten as:

Ω0 > 2µβ/
√

2πµ (19)

which means that the maximum Rabi frequency need not
be larger than the excited interval 2µβ. Actually efficient
transfer can be accomplished with significantly smaller
Rabi frequency provided µ � 1.

Having related the transfer efficiency to the adiabatic
condition, we can get insight into the physics of CHS ex-
citation. As in the infinite duration linear chirp process,
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Fig. 2. Analytical calculation of the Bloch vector evolution
interacting with an infinite duration CHS pulse. The Bloch
vector head trajectory is reproduced in the v-w plane for the
groups of ions respectively located at ∆ = (3/2)µβ (solid black
line), ∆ = (1/2)µβ (solid thick grey line), and ∆ = 0 (dashed
line). The laser is swept from ∆ = µβ to ∆ = −µβ. The
parameters of the calculation are µ = 30 and Ω0/µβ = 2/3.

we consider that the Bloch vector follows the driving vec-
tor. Therefore, to describe the Bloch vector evolution, we
just need examine the driving vector motion.

Depending whether the atomic detuning ∆ stays
within or outside the spectral interval [−βµ, βµ], the vec-
tor �D(Ω, 0, ∆+ϕ̇(t)) flips from downward to upward orien-
tation or remains within the same half-space. If ∆ < −βµ

(respectively ∆ > βµ), �D remains downward (respectively
upward) oriented. We identify the Bloch vector with a unit
vector aligned along �D. We must take care of the down-
ward initial orientation of Bloch vector. Hence:

�B = sign(βµ − ∆) �D/
√

Ω2 + (∆ + ϕ̇)2. (20)

Since �D has no component along Ov, the Bloch vector
horizontal component v vanishes. Thus according to equa-
tions (4, 5), the level population difference and the off
diagonal matrix element reads as:

ρ12 = sign(βµ − ∆)
1
2

Ω√
Ω2 + (∆ + ϕ̇)2

e2iπν0(t−t0)+iϕ(t)

n12 = sign(βµ − ∆)
∆ + ϕ̇√

Ω2 + (∆ + ϕ̇)2
. (21)

It appears that, outside the swept interval, the Bloch vec-
tor vertical component departs from –1, the maximum
variation reaching 1 − [

√
∆2 − β2µ2/

√
Ω2

0 + ∆2 − β2µ2].
This corresponds to a maximum horizontal component
length of Ω0/

√
Ω2

0 + ∆2 − β2µ2. For a given value of Ω0,
the maximal population difference approaches 0 the closer
as |∆| − βµ is smaller than Ω0. Then the vertical compo-
nent returns to –1 as time elapses (Fig. 2).

3.2 Influence of coherence relaxation

We have neglected relaxation so far. Population decay can
often be ignored, but we have to take account of the finite

coherence lifetime T2. During the flipping time from down-
ward to upward orientation, the Bloch vector exhibits hor-
izontal components, that represent the coherence of states
|1〉 and |2〉. These components decrease with a decay rate
1/T2 = πγ12. Thus, during the flipping time, the Bloch
vector length decreases as:

d|B|2
dt

= −2πγ12|Bh(t)|2 (22)

where Bh =
√

u2 + v2 is the horizontal component mod-
ule. When the Bloch vector gets its final vertical position,
its length is smaller than unity. The level population dif-
ference variation is given by:

w2(+∞) − w2(−∞) = B2(+∞) − B2(−∞)

= −2πγ12

+∞∫
−∞

|Bh(t)|2dt (23)

provided γ12

+∞∫
−∞

|Bh(t)|2dt � 1. In the adiabatic regime,

the horizontal projection of the Bloch vector reads as:

|Bh(t)|2 =
Ω2(t)

Ω2(t) + (∆ + ϕ̇(t))2

=
Ω2

0

Ω2
0 + [∆ cosh(β(t − t0)) + µβ sinh(β(t − t0))]2

. (24)

The integral
+∞∫
−∞

|B2
h(t)| is calculated as:

+∞∫
−∞

|B2
h(t)|dt =

a

β
√−1 + a2 + x2

× ln

{(
a +

√−1 + a2 + x2
)2

|x2 − 1|

}
(25)

where a = Ω0/µβ and x = ∆/µβ. At a = 1 and ∆ = 0,
the integral reduces to 2/β. Thus we get:

n2(+∞) = 1 − π
γ12

β
. (26)

Hence, to be efficient, a CHS population transfer must
satisfy the condition:

πΩ0γ12 � r0 (27)

which coincides with the corresponding condition for infi-
nite duration, linear chirp excitation.

We noticed above that outside the selected spectral
window, the Bloch vector rotates under the action of the
driving field and ultimately returns to its initial position.
The finite coherence lifetime prevents the Bloch vector
from exactly recovering its initial position. This is illus-
trated in Figure 3, where we compare the wings of the
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Fig. 3. Upper level population spectral distribution wings in
the presence (dashed line) and the absence (solid line) of relax-
ation, with T2 = 8β−1, according the numerical calculation (a)
and the adiabatic model (b). The parameters of the calculation
are µ = 30, Ω0/µβ = 2/3.

upper level population spectral distribution in the pres-
ence and in the absence of relaxation. In the wings, the
adiabatic approximation expression of the upper level pop-
ulation reads as:

n2(+∞) =
π

2
γ12

β

a√−1 + a2 + x2

× ln

{(
a +

√−1 + a2 + x2
)2

|x2 − 1|

}
. (28)

This analytic expression coincides with the numerical cal-
culation result as illustrated in Figure 3.

3.3 Finite duration pulses

Experimentally, excitation is provided by finite duration
pulses. Then, the driving vector is not exactly aligned
along the vertical axis when the field is switched on.
The geometrical model can be extended to this situa-
tion. The Bloch vector �B = (u, v, w) precesses around
�D = (Ω, 0, ∆ + ϕ̇). With the help of the rotation:

R(t) =


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 (29)

where cos θ = (∆ + ϕ̇)/
√

Ω2 + (∆ + ϕ̇)2, sin θ =
Ω/

√
Ω2 + (∆ + ϕ̇)2 the driving field coordinates are

changed into [D′] = R[D] = (0, 0,
√

Ω2 + (∆ + ϕ̇)2). Let
the field be switched on at time ti. At ti the Bloch vector
coordinates can be expressed in the rotating frame as:

[B′] = R[B] = (sin θi, 0,− cos θi) (30)

where θi = θ(ti). We assume the Bloch vector adiabati-
cally follows the driving vector, around which it precesses

Fig. 4. Upper level population spectral distribution wings af-
ter a 6β−1 duration CHS pulse, in the absence of relaxation,
according to the numerical calculation (a) and the adiabatic
model (b). The parameters of the calculation are µ = 30 and
Ω0/µβ = 2/3.

at frequency −√
Ω2 + (∆ + ϕ̇)2. At time t, the Bloch vec-

tor coordinates in the rotating frame turn out to be:

[B′(t)] = (sin θi cosΦ,− sin θi sin Φ,− cos θi) (31)

where Φ =
∫ t

ti

√
Ω(t′)2 + [∆ + ϕ̇(t′)]2dt′. The original

frame Bloch vector coordinates are recovered with the help
of [B(t)] = R−1(t)[B′(t)]. Therefore at time t the compo-
nents u, v, w read as:




u = sin θi cos θ cosΦ − cos θi sin θ

v = − sin θi sin Φ

w = − sin θi sin θ cosΦ − cos θi cos θ

. (32)

Let us consider a time symmetric pulse of duration 2T �
β−1. Then expansion of equation (32) leads to the fol-
lowing expression of upper level population n2(∆) in the
outer wings of the selected window:

n2(∆) =
Ω2(T )

2(∆2 − µ2β2)

[
2µ2β2

∆2 − µ2β2
+ 1 − cosφ

]
(33)

when 0 < ∆2 − µ2β2 � µ2β2, the oscillatory term is neg-
ligible and the population exhibits an hyperbolic depen-
dence on the distance from the window edge. The 1−cosφ
dependence is dominant when ∆2 � 2µ2β2. These fea-
tures are illustrated in Figure 4, where the wings of the
calculated upper level population spectral distribution are
displayed under finite duration CHS conditions. The ge-
ometrical model shows an excellent agreement with the
numerical calculation.

In conclusion, both coherence decay and finite pulse
duration can deteriorate the CHS excitation spectral se-
lectivity. The total duration of the CHS pulse in terms
of β−1 should be adjusted in such a way that limited ex-
citation time be less harmful to spectral selectivity than
the coherence decay. In the next sections, we present an
experiment that we devised to explore various aspects of
CHS excitation. Specifically, we have examined the pop-
ulation transfer efficiency and the temporal evolution of
the Bloch vector.
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Fig. 5. Level scheme of Tm3+:YAG. The op-
tical excitation is tuned to transition |1〉 →
|2〉. The upper level |2〉 mainly decays to the
shelving state |3〉 through non-radiative re-
laxation. The decay rates connecting the lev-
els are denoted as κij .

4 Experimental investigation of population
transfer

Experimental investigation is performed in a 0.1 at.%
Tm3+:YAG sample, cooled at 1.4 K in a liquid helium
bath cryostat. The crystal, grown at Scientific Materials
Corp., is cut and polished normally to [ ¯110] direction. The
crystal is 2 mm thick along the light propagation direc-
tion [ ¯110], which corresponds to an optical density ∼0.1.
The Tm3+ ions occupy six crystallographically equivalent
but orientationally inequivalent sites with dodecahedral
point symmetry D2. We polarize the incident beams along
direction [001]. Then four sites undergo identical interac-
tion with the field. The two remaining sites are not cou-
pled with the field, which is orthogonal to their interaction
dipole moment [20].

The level scheme of Tm3+:YAG ions is illustrated in
Figure 5. CHS excitation is applied to the optical tran-
sition at 793 nm between the ground state |1〉 and the
excited state |2〉. The excited state decays to the shelv-
ing state |3〉 with a branching ratio close to 0.75, that we
measured by photon echo techniques. The shelving state
decay rate κ31 (κ−1

31 ∼ 10 ms) is much smaller than the
upper level decay rate κ21 +κ23 ((κ21 +κ23)−1 ∼ 0.5 ms).
We also measured those decay rates with photon echo ex-
periments.

Fig. 6. Experimental set-up. The laser beam is spatially filtered by an optical fiber. The CHS pulse is shaped by the acousto-optic
modulator AO1 that is directly fed at 100 MHz RF carrier frequency by a 1 Gs/s arbitrary wave form generator (Sony-Tektronix
AWG 520). AO1 is imaged on the sample, which is cooled down to 1.5 K by cryogenic techniques. The crystal is imaged on a
pinhole that selects the central part of the illuminated spot. AO2 protects the detector from the excitation pulses. The time
sequence is controlled by the pulse generator (DG 535).

As the optical density is proportional to the popula-
tion difference n1−n2, we probe the transfer efficiency by
measuring the transmission of an attenuated probe laser
beam through the exposed sample. The experimental
set-up is represented in Figure 6. The 793 nm extended
cavity diode laser is closed by a diffraction grating in
Littrow configuration. Pound-Drever-Hall procedure is
used to lock the laser to a high finesse (∼3000), 10 cm-long
Fabry-Perot interferometer. An intracavity electro-optic
crystal closes the locking loop. Relative stability of 250 Hz
has been achieved on 10 ms timescale [12]. After spatial
filtering in an optical fiber, the beam is then amplitude
and phase shaped by an acousto-optic modulator (AO1).
A high frequency waveform generator (Sony-Tektronix
AWG 520) synthesizes the 80 MHz radio-frequency
carrier used to drive the acousto-optic modulator AO1

through a RF amplifier. This enables us to directly shape
the beam in phase and amplitude with the AWG520
clock precision of 1 gigasample/s and a 10 bits amplitude
dynamic range. This situation is contrasted with previous
experimental investigations in the femtosecond range,
where optical techniques were used to indirectly shape
the laser beam [11]. The driving power of the modulator
is adjusted in such a way that AO1 operates in the
linear regime, i.e. the transmitted field is proportional
to the driving voltage. The spot waist at 1/e2 on the
modulator is w0 = 175 µm. The modulator is imaged
on the crystal in such a way that the illuminated region
does not move when the laser is frequency swept by
the modulator. The spot waist at 1/e2 on the crystal is
w1 = 33 µm. The laser power at the cryostat input is
P1 ∼ 0.6 mW. According to the transition dipole moment
value reported in reference [19], this corresponds to a
maximum Rabi frequency Ω0 ∼ 2.0 × 106 s−1 and to a
ratio Ω2

0/r0 ∼ 22.0 for a frequency sweep of 750 kHz
during 75 µs (β = 0.08 µs−1, µ ∼ 30). The crystal is then
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Fig. 7. Time diagram of an excitation/probing sequence for an
adiabatic transfer experiment using a CHS pulse. During the
excitation step, the laser field amplitude and phase are CHS
shaped by AO1, while AO2 is closed. During the probing step,
the laser beam is attenuated and the frequency is linearly swept
by AO1 over the excited region. AO2 is open. One expects
probe beam amplification over the interval where ground state
population has been transferred to the upper level.

imaged on a 100 µm diameter pinhole, so that only the
central region of the exposed region is probed. The spot
diameter at 1/e2 on the pinhole is 2w2 = 260 µm. The
transmitted beam is detected on an avalanche photode-
tector (Hamamatsu C5460), with a bandwidth of 10 MHz.
The photodetector is protected from the excitation pulse
by the acousto-optic modulator AO2. A pulse generator
(Stanford Research DG 535) drives AO2 and triggers the
AWG 520 generator.

The time diagram for an excitation/probing se-
quence is presented in Figure 7. At the excitation stage,
AO1 shapes the CHS pulse while AO2 is closed to protect
the detector. The laser frequency is scanned over 750 kHz
during τ = 75 µs= 6β−1, which corresponds to µ = 29.45
and to a variation of β(t − t0) from –3 to +3. The field
amplitude on the pulse edges is <1/10 its maximum value.
At the read-out stage, the probing beam is strongly atten-
uated by AO1 while AO2 is opened. In the probing stage,
we scan the laser over a frequency interval twice as large
as the excited domain. This way, we also probe unexposed
ions. The chirp rate is reduced to rp = 3.75 × 109 Hz/s
so that the read-out spectral resolution, given by √

rp, is
∼60 kHz. One expects amplification of the probe beam
over the frequency interval excited by the CHS pulse.

The quantity of interest, the optical density D, can be
expressed in terms of the transmitted intensity as:

D = log
(

I0

I

)
(34)

where I0 and I respectively represent the incident and
transmitted intensity. The optical density is proportional
to the level population difference n1 − n2. All the ions
are supposed to be in the ground state before excitation
and this initial ground state population is normalized to

unity. Let D(0) and D(1)(t) respectively represent the opti-
cal density before excitation and at time t after excitation.
The density ratio reads as

D(1)(t)
D(0)

= n1(t) − n2(t). (35)

Immediately after excitation, all the population is shared
between levels 1 and 2, so that

n1(0) + n2(0) = 1. (36)

We assume that the upper level population exponentially
decays at rate κ = κ21 + κ23 = 2000 s−1 with branching
ratios to shelving and ground states respectively given by
η = 0.75 and 1− η. Therefore D(1)(t) can be expressed in
terms of n2(0) only as

D(1)(t)
D(0)

= 1 − n2(0)(η + (2 − η) exp(−κt)). (37)

Finally, from equations (34) and (37), one derives the ex-
pression of n2(0):

n2(0) =
1

n + (2 − η) exp(−κt)
log(ITP (t)/ITU )

log(I0/ITU )
(38)

where ITU and ITP respectively represent the transmitted
intensity through the unexposed and excited sample. The
intensity ITU is obtained in the far wings of the trans-
mission profile, outside the exposed region. The amplified
intensity ITP is obtained in a single shot regime, where
the experiment 10 Hz repetition rate is ∼10 times smaller
than the shelving state decay rate. The incident intensity
I0 coincides with the transmitted intensity through the
totally bleached crystal. This is measured in the accumu-
lation regime where the excitation/probing sequence is re-
peated at a rate of 2 KHz. The excited ions are pumped to
the shelving state due to the repetition of the excitation,
and the transition is completely bleached.

The resulting upper level population spectral distri-
bution is displayed in Figure 8 together with the com-
puted profile. Numerical calculation was performed with
Ω0 = 1.6 × 106 s−1 and T2 = 100 µs. The experimen-
tal transfer rate reaches ∼94%, slightly larger than the
computed value. Accuracy is mainly limited by the opti-
cal density measurement precision. The resulting error on
n2(0) is estimated to be ∼3%. The transmission profile
after accumulated excitation was used to calibrate the in-
cident intensity. This profile also provides information on
frequency selectivity. Actually, the sample exposed to ac-
cumulated excitation appears to be totally bleached out-
side the excitation window. This is a signature of wing
excitation associated with finite coherence lifetime, as dis-
cussed in Section 3. In accordance with theoretical pre-
dictions, CHS excitation appears to offer a good way for
efficient quantum state swapping in a macroscopic inho-
mogeneously broadened ion ensemble. Spectral selectivity
requires that the pulse duration be much smaller than the
coherence lifetime, a condition that is not totally satisfied
in the present experiment.
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Fig. 8. Calculated (dashed line) and measured (solid black
line) upper level population spectral distribution versus nor-
malized detuning just after excitation by a CHS pulse of dura-
tion 6β−1. The parameters of the CHS excitation are µ = 30,
β = 0.08 µs−1 and Ω0/µβ = 0.9. The coherence lifetime is
T2 = 8β−1. The solid grey line represents the accumulation
regime with an excitation repetition rate of 2 kHz.

Information derived in this experiment is not limited
to the level population difference. As shown in the next
section, we are able to get more detailed knowledge on
the Bloch vector motion, including the atomic coherence
component evolution.

5 Bloch vector motion as expressed by free
induction decay

The Bloch vector exhibits horizontal components during
the flipping time. If the excitation field is interrupted at
time tint, the coherences evolve freely and can be ex-
pressed at time t as:

ρ12(ν12, t) = ρ12(ν12, tint)e2iπν12(t−tint). (39)

These oscillating coherences emit a Free Induction De-
cay (FID) signal [15] that reflects the atomic superposi-
tion state at tint. The FID signal amplitude EFID (t) =
EFID (t)e2iπν0t+iϕ(t) + cc is proportional to the sum of the
different atoms contributions. At time t > tint, it reads as:

EFID (t) = −in0
kdabL

2ε0
e−2iπν0(t−t0)

∫
ρ12(ν12, t)dν12

=
kdabL

2ε0
ei[ϕ(tint)−π

2 ]
∫

ρ̃12(∆, tint)e−2iπ∆(t−tint)d∆

(40)

where n0, k, and L respectively represent the active cen-
ter density, the wave vector and the sample length. This
expression is proportional to the Fourier transform of
the coherence spectral distribution at time tint, F =∫

ρ̃12(∆, tint)e−2iπ∆(t−tint)d∆. This way, by interrupting

Fig. 9. Spectral distribution of the computed amplitude (a)
and phase (b) of the Bloch vector horizontal component af-
ter interruption of CHS excitation at tint = t0. Computation
has been performed with Ω0 = 2βµ/3 and µ = 30. The adia-
batic model and the numerical solution of Bloch equation are
respectively represented by solid black line and thick grey line.

the CHS excitation at different moments (Fig. 1c), we are
able to derive information on the Bloch vector horizontal
component all along the swapping state process.

Starting from zero when tint equals the pulse switch-
ing time ti, the FID signal amplitude grows as tint is in-
creased and should be maximal when the CHS pulse is in-
terrupted at half-way (tint = t0). Indeed at this time the
coherence spectral density is maximal. For an interruption
time tint > t0, the amplitude of the FID signal decreases
as a function of tint, since the atomic coherences are then
transformed into atomic populations by the CHS pulse.
The signal should vanish when all the excited atoms are
in the upper level.

We consider a finite duration time-symmetric CHS ex-
citation and concentrate on the Bloch vector horizontal
component investigation at two specific times, i.e. at mid
pulse (tint = t0) and at the end of the pulse. Let us
first examine atomic excitation at tint = t0. At that mo-
ment, the laser frequency has been scanned over the in-
terval ν0 − µβ/2π < ν < ν0. The numerical calculation
of the amplitude and phase of the horizontal component
is displayed in Figure 9 corresponding to a total duration
of 6β−1 and a Rabi frequency value Ω0 = 2µβ/3 with
µ = 30. We have neglected the coherence decay. In the
same figure, we reproduce the prediction of the geometric
adiabatic model. In this model we assume that the Bloch
vector is aligned along the driving vector, which corre-
sponds to coupling starting at ti = −∞. The main features
are correctly described by the simple model, some discrep-
ancy being observed only at ∆ ∼ µβ. The excited atoms
distribution exhibits a large width with extensive wings.

R
apide N

ot

H
ig
hl
ig
ht
 P
ap
er



F. de Seze et al.: Coherent driving of Tm3+:YAG ions using a complex hyperbolic secant optical field 351

Fig. 10. Computed FID field amplitude (a) and phase (b)
temporal evolution after interruption of CHS excitation at
tint = t0. Computation has been performed with β = 0.08 µs−1

and Ω0 = 2βµ/3 with µ = 30. The adiabatic model and the nu-
merical solution of Bloch equation are respectively represented
by solid black line and thick grey line.

In addition, although the laser resonantly interacted only
with the atoms such that ∆ > 0, the length of the Bloch
vector horizontal component distribution appears to be
symmetric around ∆ = 0. The π phase discontinuity at
∆ = µβ corresponds to the sign change that appears in
equation (20).

It appears that the mid-pulse interrupted CHS exci-
tation might offer a way to prepare atoms in a specific
superposition state. First one selects a narrow frequency
group of atoms at a specific distance ∆ from ν0, by pump-
ing atoms with different absorption frequency outside of
the spectral interval to an auxiliary state. Such a prepa-
ration has already been demonstrated in rare-earth ions
embedded in crystals using hard pulses [20] or RAP tech-
niques with chirped pulses [21]. Then one applies the mid-
pulse interrupted CHS excitation to the selected group of
atoms. The pulse leaves them oriented along the final �D
direction:

D̂ =
(

Ω0/
√

Ω2
0 + ∆2, 0, ∆/

√
Ω2

0 + ∆2

)
. (41)

The FID field amplitude and phase time evolution cor-
responding to Figure 9 has been computed according
to equation (40). The result of the calculation of F =∫

ρ̃12(∆, tint)e−2iπ∆(t−tint)d∆ is reproduced in Figure 10.
From the adiabatic model expression of the signal ampli-
tude, the decay rate at t = tint is calculated as:

1
|EFID (tint) |

d|EFID (tint) |
dt

= − (π/2)
√

Ω2
0 + µ2β2[

arcsinh
(

µβ
Ω0

)]2

+
(

π
2

)2

(42)

Fig. 11. In the inset: break down of the Bloch vector u-
component distribution (solid line) as a sum of a dispersive con-
tribution (grey solid line) and a complementary term (dashed
line). The corresponding FID component time evolution is re-
produced in the main frame. The dispersive contribution (grey
solid line) dominates the complementary term (dashed line) at
(t − t0)µβ � 1.

which is dominated by Ω0 when Ω0 � µβ. The continu-
ous growing of the phase as a function of time reflects a
frequency shift of the emission with respect to the central
frequency ν0. The frequency shift at t = tint reads as:

1
2π

dϕ(tint)
dt

= − 1
2π

arcsinh
(

µβ
Ω0

)√
Ω2

0 + µ2β2

[
arcsinh

(
µβ
Ω0

)]2

+
(

π
2

)2
. (43)

To get some insight into the underlying physics, we have
broken down the Bloch vector u-component distribution
as a sum of two terms (see the inset in Fig. 11). We build
the first term as a dispersion profile by combining the hy-
perbolic branch observed at ∆ ≥ µβ/2π with the branch
obtained by inversion with respect to ∆ = µβ/2π. Disper-
sion shape is typical of causal excitation by a monochro-
matic field at ν0 − µβ/2π. Then we have to add a second
term to complement the dispersive component and recover
the Bloch vector u-component distribution. As shown in
Figure 11, the additional term contribution to the FID
signal decreases faster than the dispersive one as a func-
tion of time. Therefore, as time elapses, the FID signal is
ultimately centered at ν0 − µβ/2π.

We now consider the FID signal emitted at the end
of the finite duration time-symmetric CHS pulse. The nu-
merical calculation of the amplitude and phase of the hori-
zontal component is displayed in Figure 12 corresponding
to a total duration of 6β−1 and a Rabi frequency value
Ω0 = 2µβ/3 with µ = 30. We have ignored the coherence
decay. The prediction of the geometric adiabatic model is
also shown in Figure 12a. To correctly describe the region
∆ ∼ µβ, we had to use the finite duration model instead
of the model where the Bloch vector is aligned along the
driving vector. This finite duration adiabatic model also
predicts a phase distribution very close to the numeri-
cal calculation displayed in Figure 12b. In Figure 12a one
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Fig. 12. Spectral distribution of the computed amplitude (a)
and phase (b) of the Bloch vector horizontal component at the
end of the finite duration time-symmetric CHS pulse. Compu-
tation has been performed with Ω0 = 2βµ/3 and µ = 30. The
adiabatic model and the numerical solution of Bloch equation
are respectively represented by solid black line and thick grey
line.

can observe that the frequency areas with significant com-
ponents are located at the edges of the excited window,
where the transfer is not total and where some coherences
survive. The main contributions to the FID signal should
arise from these two wings according to equation (40).
However, existence of coherences is not enough to have a
FID signal emitted. In addition, those coherences have to
oscillate in phase. Information of the phase distribution
is provided by Figure 12b. This figure essentially reflects
the inhomogeneous dephasing of the dipoles after they are
built up.

Atoms located around ∆ = µβ are excited first, in-
teracting resonantly with the field at time ∼ tint − 4β−1.
Their phase shift at time t is ∼ ∆(t− tint + 4β−1). Since,
according to Figure 12a, the FWHM of their distribution
at ∆ = µβ is ∼0.2µβ, their relative inhomogeneous de-
phasing is ∼ 0.1µβ(t− tint +4β−1) and the corresponding
emitted field amplitude varies as ∼e−0.1µβ(t−tint+4β−1).

The situation is different for atoms located around
∆ = −µβ. These atoms are still resonantly interacting
with the driving field when the CHS pulse is switched off.
Inhomogeneous dephasing is inhibited as long as interac-
tion is maintained [23], as can be observed in Figure 12b.
They start to dephase after the CHS is switched off. There-
fore, their relative inhomogeneous dephasing at time t is
∼0.1µβ(t − tint). Hence, one expects that their contribu-
tion to the emitted field be ∼e0.4µ ∼ 1.6×105 times larger
than the contribution arising from atoms at ∆ = µβ.
In other words, no visible contribution is expected from
atoms at ∆ = µβ.

Fig. 13. Computed FID field amplitude (a) and phase (b)
temporal evolution at the end of the finite duration time-
symmetric CHS pulse. Computation has been performed with
β = 0.08 µs−1 and Ω0 = 2βµ/3 with µ = 30. The adiabatic
model and the numerical solution of Bloch equation are respec-
tively represented by solid black line and thick gray line.

The corresponding FID field amplitude and phase
time evolution has been computed according to equa-
tion (40). The result of the calculation of F =∫

ρ̃12(∆, tint)e−2iπ∆(t−tint)d∆ is presented in Figure 13.
Surprisingly, the FID signal amplitude, as displayed in
Figure 13a, exhibits a small beat structure that reflects
the contribution of both ∆ = ±µβ regions. The beat pe-
riod is consistent with the 2µβ frequency distance of these
two regions. The signal amplitude is smaller than when ob-
served after interruption of the CHS at mid-pulse. Indeed
fewer atoms contribute to the signal. The decay rate is
consistent with the spectral size of the radiating region.
The FID signal phase shift with respect to the laser central
frequency exhibits a quasi-linear time dependency, with a
slope close to µβ. Indeed the main contribution arises from
atoms located at ∆ ∼ −µβ.

In the next section, we strive to experimentally demon-
strate the various features discussed above.

6 Experimental free induction decay detection

In order to monitor the signal phase and to optimize the
signal size, we use heterodyne detection. The time diagram
of a FID experiment is presented in Figure 14. At the ex-
citation stage, AO1 is opened and shapes the CHS pulse
while AO2 is closed to protect the detector. The laser fre-
quency is scanned until tint according to the CHS profile.
At that moment, the laser undergoes an abrupt frequency
shift, 7 MHz above ν0 and AO1 transmission is strongly
reduced. This provides us with the heterodyne reference
that copropagates with the signal through the sample and
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Fig. 14. Time diagram of an interrupted CHS pulse FID ex-
periment with β = 0.08 µs−1. During the exciting step, the
laser field amplitude is shaped by AO1. AO2 is closed. During
the detection stage, the laser field amplitude is attenuated and
shifted of +7 MHz from the central frequency by AO1 and AO2

is open. The expected signal exhibits a beat between the laser
beam and the FID signal.

is perfectly synchronized with the exciting field. The fre-
quency shift value is limited by the detector bandwidth.
The acousto-optic modulator AO2 is opened for signal de-
tection.

It should be pointed out that because of the acoustic
wave propagation, excitation is not phase uniform within
the sample. The laser beam phase ϕ in the modulator AO1

is equal to:

ϕ(x, t) = 2πν0t + ϕAO

(
t − x

vAO

)
(44)

where x represents the coordinate along the propagation
direction of the acoustic wave into the modulator, with
x = 0 at the center of the spot, ϕAO represents the phase
of the acoustic wave at position x = 0, and vAO represents
the propagation speed of the acoustic wave. To first order,
ϕ reads as:

ϕ(x, t) = 2πν0t + ϕAO(t) − x

vAO

dϕAO

dt

= 2πν0t + ϕAO(t) − 2π
x

vAO
νAO(t) (45)

where νAO(t) is the frequency of the acoustic wave. The
100 µm-diameter pinhole selects the 25 µm-diameter cen-
tral part of the excited spot through 4-magnification-
factor optics. This corresponds to a d = 133 µm-diameter
at the modulator. Therefore the phase difference of the
observed region edges is:

δϕ(t) = 2π
d

vAO
νAO(t). (46)

Fig. 15. Heterodyne detection ((a), black line) of the FID sig-
nal emitted after the mid-pulse interruption of a time symmet-
ric CHS pulse of duration 6β−1. The FID signal ((b), grey line)
is extracted by fitting the experimental data ((a), grey line)
and is compared to the numerical calculation with Ω0/µβ = 0.3
((b), solid black line) and Ω0/µβ = 0.4 ((b), dashed black line).
The parameters of the CHS are µ = 30 and β = 0.08 µs−1. The
coherence lifetime is T2 = 8β−1.

The phase difference vanishes at t = t0. At the starting
and the end of the CHS pulse, where νAO(t) = ±βν/2π,
the phase difference reaches ∼0.075 rad. This phase differ-
ence is small but may not be negligible. The phase non-
uniformity is associated with an angular rotation of the
incident beam wavevector. The 7 MHz frequency shift of
the heterodyne reference beam induces a π/2 phase differ-
ence between the spot sides, which corresponds to a 10%
reduction of beat contrast.

We first explore the Bloch vector at mid-CHS pulse
by detecting the FID signal after interruption at tint =
t0. The detected signal is presented in Figure 15a.
Experimental conditions are β = 0.08 µs−1, µ = 29.6 and
T = 3β−1. The signal is unavailable during the ∼60 ns ris-
ing time of the detector and the acousto-optic modulator
AO2.

To process the data, we fit the experimental signal in-
tensity profile I(t) with the following expression:

I(t) = S[G(t)]2+R+2Q
√

SRG(t) cos[f(t−tint)+Ψ ] (47)

where S, R, f , G respectively represent the FID signal
initial intensity, the heterodyning reference intensity, the
beat frequency and the shape to be extracted. Ideally, the
beat quality factor Q should equal unity. The fitted val-
ues lead to the profile displayed in grey in Figure 15. Fac-
tor Q turns out to be ∼0.6. We noticed above that the
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reference beam is not exactly collinear with the signal,
which slightly deteriorates the interference term. However,
this is not enough to explain the small Q value. Geome-
try differences between the two beams might also affect
this factor. The shape deduced from the fit is reproduced
in Figure 15b. This shape matches a computed profile
that corresponds to a Rabi frequency value significantly
smaller than expected. Indeed, we measured Ω0/µβ = 0.9
while the value deduced from the fit is located between
Ω0/µβ = 0.3 and Ω0/µβ = 0.4. Precise positioning of
the sample at beam waist is hampered by the cryostat.
The observed discrepancy in Ω0 value may result from
wrong positioning. From the fit, we also obtain the phase
at tint and the frequency detuning. The measured phase
of F =

∫
ρ̃12(∆, tint)e−2iπ∆(t−tint)d∆ at tint is 3.01 rad,

to be compared with the computed value of 0.69 rad. The
initial phase measurement seems to be out of reach of our
present set-up despite of the excellent wave control pro-
vided by AWG 520 generator. This may be ascribed to
the blind zone that obscures the first 60 ns. If the signal
phase shift were time-independent, the frequency parame-
ter f should equal 7 MHz. Actually, this parameter turns
out to equal 7.185± 0.005 MHz, which corresponds to an
emission 185±5 kHz down-shifted with respect to ν0. This
is consistent with signal emission by the atoms located be-
tween ν0−µβ/2π and ν0, as discussed in Section 5. In ad-
dition, this frequency shift is close to the computed shift
of 179 kHz.

Then we investigate the Bloch vector distribution at
the end of the excitation pulse by detecting the FID sig-
nal at tint = t0 + T . The experimental conditions are
the same as in the previous experiment. The detected
signal is displayed in Figure 16, together with the FID
amplitude time evolution, extracted from the beat signal.
The signal is scaled to the size of the signal obtained at
mid-pulse. The experimental amplitude ratio of FID sig-
nals at tint = t0 and tint = t0 + T is equal to 5.29, to
be compared with the computed ratio of 5.16. The ex-
perimental time evolution of the FID signal amplitude
(Fig. 16b) exhibits the expected beat structure with a
beat period close to (750 kHz)−1. The frequency detuning
equals 6.70±0.005 MHz, which corresponds to an emission
300 ± 5 kHz up-shifted with respect to ν0. This is consis-
tent with signal emission by the atoms located around
ν0 +µβ/2π, as discussed in Section 5. The computed shift
is ∼375 kHz. As in the previous experiment, the mea-
surement of initial phase is not meaningful because of the
necessary extrapolation into the blind zone.

The experimental data nicely confirm the theoretical
description presented in Section 5. However, the phase
measurement does not lead to satisfactory results. This
is a significant issue in experiments that aim at monitor-
ing the atomic system quantum state.

7 Conclusion

We have applied a Rapid Adiabatic Passage approach to
the analysis of CHS excitation, unlike some previous works
that focused on CHS mathematical aspects [8,22]. First we

Fig. 16. Heterodyne detection ((a), black line) of the FID sig-
nal emitted after the time symmetric CHS pulse of duration
6β−1. The FID signal (b) is extracted by fitting the experi-
mental data ((a), grey line). The parameters of the CHS are
µ = 30, β = 0.08 µs−1 and Ω0/µβ = 0.9. The coherence life-
time is T2 = 8β−1.

have demonstrated that efficient population transfer by a
CHS pulse is related to the adiabatic condition. This has
led us to show that a CHS pulse can adiabatically excite
atoms over a spectral interval 2µβ significantly larger than
the maximum Rabi frequency, provided µ � 1. Then,
when the adiabatic condition is fulfilled we have simply
assumed that the Bloch vector keeps locked to the driv-
ing vector all along the excitation pulse. This way, we get
physical insight into the process. We get better under-
standing of its spectral selectivity and of limiting factors,
such as coherence lifetime and finite duration. This ap-
proach is confirmed by numerical solution of the Bloch
equations and experimental results. For the first time in
the optical domain, using CHS excitation, we have experi-
mentally demonstrated population transfer close to 100%,
not only population inversion. By resorting to FID signal
analysis, we have been able to follow the Bloch vector evo-
lution along the excitation process. Finally, we have pro-
posed a new technique to prepare the atoms in a superpo-
sition state. By the way, the adiabatic model approach still
suggests another procedure to drive the Bloch vector from
any initial position to an arbitrary final direction. This
could be accomplished by first growing the driving vector
along the Bloch vector, until the latter is locked. This is
made possible with our present laser phase and amplitude
control techniques. Then one is free to adiabatically ori-
ent the driving vector to the desired direction. Finally the
field can be switched off abruptly. In summary, we have
clarified the conditions in which CHS excitation can be
used in the framework of quantum information, either to
build C-NOT gates [1] or to drive 3-level system [18] in
the prospect of quantum storage.
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